TECHNOLOGY OFFER

Identification and uses of a novel mammalian RNA 2', 3'-cyclic phosphatase

We present ANGEL2, a mammalian RNA processing enzyme with the unique ability to hydrolyze RNA terminal 2',3'-cyclic phosphates and 2'-phosphates into 2',3'-OH. We propose recombinant ANGEL2 as a tool in cloning protocols for whole transcriptome shotgun sequencing (RNA-seq), to specifically uncover RNA species ending with 2'-, 3'- or 2',3'-cyclic phosphate groups. The lack of reactivity towards 3'-P distinguishes ANGEL2 from well-known, commercially available enzymes such as T4 polynucleotide kinase or alkaline phosphatase. Highly active, recombinant ANGEL2 can be efficiently produced using bacterial or insect cell expression systems.

BACKGROUND

Cellular RNA molecules can display 3'-hydroxyl (3'-OH), 3'-phosphate (3'-P) or 2',3'-cyclic phosphate (2',3'>P) termini. While 3'-OH ended RNA species are readily cloneable using standard RNA-seq library preparation protocols, RNAs ending with 2'P-, 3'-P or 2',3'>P groups require laborious and artefact-prone processing and therefore remain mostly elusive. RNA molecules with a terminal 2',3'>P arise from endonuclease cleavage, exonuclease trimming, or de novo synthesis by the RNA 3'-terminal phosphate cyclase, RTCA, acting on yet unidentified 3'-P ended RNAs. The only enzyme known so far to convert 2',3'>P into 2',3'-OH is the bacteriophage T4 polynucleotide kinase (T4 PNK). However, T4 PNK also removes 2'-P and 3'-P. In turn, Alkaline phosphatase (CIP) removes terminal 2'-P and 3'-P, but does not react towards 2',3'>P.

TECHNOLOGY

We have identified and characterized human ANGEL2, a predicted deadenylase, as a novel, unique and highly active RNA 2',3'-cyclic phosphatase able to convert 2',3'>P and 2'-P, 3'-OH termini, but not 2'-OH, 3'-P, into 2',3'-OH. We propose the technological use of recombinant ANGEL2 in cloning protocols for RNA-seq, to identify cellular RNAs terminating in 2'P or 3'-P (main use), or 2',3'>P (minor use). Recombinant ANGEL2 can be supplied alone or as part of a kit, with 2',3'>P and 2',3'-OH RNA substrates as positive and negative controls, respectively, and with appropriate buffers (pH 7-9) and divalent metal ions such as Mg^{2+} , Mn^{2+} , Ca^{2+} in a final concentration range of 2-50 mM.

www.meduniwien.ac.at

REFERENCE: 675.17

DEVELOPMENT STATUS: Recombinant enzyme is available

IPR: EP18195389

KEYWORDS:

ANGEL2 RNA-seq 2',3'-cyclic phosphate 2'-phosphate 3'-phosphate UPR

AVAILABLE FOR:

R&D collaboration

License Agreement

INVENTORS:

Paola H. Pinto Stefan Weitzer Javier Martinez Alexander Schleiffer

Figure: The peculiar substrate specificity of ANGEL2 makes it a unique reagent for cloning protocols to identify RNAs of the hidden transcriptome layer.

Cellular RNA	RNA products after treatment with		
substrates	CIP	T4 PNK	ANGEL2
3´-OH	3′-OH	3′-OH	3´-OH
3′-P	3´-OH	3´-OH	3′-P
2´-P	3´-OH	3′-OH	3´-OH
2´,3´>P	2′,3′>P	3′-OH	3´-OH

BENEFITS

- ANGEL2 exclusively reacts towards RNAs containing 2',3'>P and 2'-P.
- ANGEL2 is not reactive towards 3'-P ended RNAs (CIP and T4 PNK activities).
- ANGEL2 does not dephosphorylate 5'-P termini (CIP activity).
- ANGEL2 substrates includes single and double stranded RNAs.
- ANGEL2 can be produced with high yields using bacterial and insect cell expression systems.

ADVANTAGE

ANGEL2 as a reagent in cloning protocols for RNA-seq analysis to identify novel RNA species that have so far escaped detection using commercially available reagents such as CIP and T4 PNK.

Andrea Kolbus

Medical University of Vienna Technology Transfer Office +43-1-40160 25204 andrea.kolbus@ meduniwien.ac.at

